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Bullseye patterns are commonly found in antibiograms, yet why they appear is often overlooked. Antibi-
otic gradients, like those generated during an antibiogram (above), force conditions that promote the rapid
onset of drug resistance. By inhibiting bacterial growth, antibiotics protect the surrounding carbon (nutri-
ents) and therefore only resistant mutants will be able to use it generating bullseye patterns in the process.
We detected that mutants with additional copies of the operon acr, responsible for the AcrAB-TolC efflux
pump, emerged within 24h and spreaded as predicted by Fisher’s traveling wave. This amplification of acr
is consistent with data observed in the clinic1.

I. Objective

A
ntibiograms are one of the most common antibiotic sensitivity tests used in hospitals, but they
also provide a unique tool to study the ecology of antibiotic resistance. Antibiograms, like the one
shown above, produce a clearance or inhibition zone due to the effect of the drug and it can be used

to translate antibiograms into a dose regime. But this translation is problematic2.
We developed a mathematical antibiogam to study the diffusion of antibiotic molecules in these tests and
resolved the relationship between zone of inhibition size and drug dose that we validated in vitro. We then
used the solution to modify Monod’s growth law and study the growth of microbes in the presence of an-
tibiotic gradients. We observed the onset of resistance to be very rapid (8h), leading to emerging bullseye
patterns in which bacterial subpopulations are spatially arranged based on their degree of resistance. We
found each subpopulation to contain increasing number of the acr operon, known to confer drug resistance
in the clinic1.

II. Methods and Results
II.A Linear diffusion theory describes how drug molecules diffuse

Medicine and general education textbooks2–6 claim that zone of inhibition size is proportional to drug con-
centration. Given this proportionality, an antibiogram can be translated into a dose of reference, like the
minimum inhibitory concentration (MIC), using linear regressions6,7. However, it is difficult to demon-
strate that the data is truly straight6,7 and, importantly, the aforementioned claim confronts fundamental
linear diffusion theory.
Using the linear diffusion equation At = σ(Axx +Ayy), which describes the flux of the antibiotic A in two
dimensions x and y, we derived the following relationship between the radius of the zone of inhibition and
drug concentration: r = 2

√
Ac/Adπe, where Ac denotes the initial drug concentration, Ad the minimum

inhibitory concentration and r2 = x2 + y2 the radius of the zone of inhibition (Fig. 1A).
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0.1 Di↵usion and clearance zone in MG1655 and AG100

For both MG1655 and AG100 strains, bacteria were inoculated into soft agar supplemented with 1% glucose.
The central circle of the plate was made with concentrations of doxycycline ranging from 1xMIC (all doses refer
to concentrations used in liquid media) to 128xMIC, in 8 two-fold steps. The clearance zone was measured by
fitting a circle to the radius of no growth, and by measuring pixels until growth reached an arbitrary threshold
(e.g., 0.3 ⇤maxgrowthintensity). The raw pictures, profiles and clearance zones are shown below.

Raw image − false colour

Polar Transformed Image

Figure 1: Raw pictures of AG100 at various Dox concentrations.
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Figure 2: AG100 profile plots, whereby pixel intensity (brightness) is used as a proxy for optical density, and
thereby, growth.
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C)Figure 1. Antibiotic molecules diffuse as predicted by linear diffusion theory. A) The mathematical antibiogram predicts that
doubling drug concentration will not double the size of the zone of inhibition but by a factor of 2

√
2. B) Antibiograms imple-

mented to force drug diffusion in two dimensions. Bacterial lawn (in false colour) showing the zones of inhibition with dosages
ranging from 1 to 128 times the MIC for doxycycline. C) Data obtained for Escherichia coliMG1655 (left) and AG100 (right) is
non-linear and consistent with a power model with coefficient two (reminder: 2

√
a = a0.5).

We implemented an antibiogram protocol where the drug diffuses strictly in two dimensions (Fig. 1B) and
registered the growth over time using a computerised camera. The resulting data demonstrates that the in-
crease in zone of inhibition is consistent with the expression above derived from linear diffusion theory (Fig.
1C) and, consequently, to double the zone of inhibition the antibiotic dose must increase 4-fold (8-fold if
diffusion is in 3D).

II.B Antibiotic gradients lead to the rapid (8h) onset of resistance

Antibiotic resistance is studied in environments that assume uniform drug distribution8,9 but this assump-
tion is not realistic as gradients are everywhere in nature. Now that we demonstrated how drug molecules
diffuse, we modified Monod’s growth law to accomodate the spatial distribution of a source of carbon, S,
and an antibiotic A. Assuming that S is uniformly distributed at t=0, the spatially-extended Monod model
predictics the maximal growth rate to occur not at the edge of the plate where the drug concentration is
minimal, but somewhere closer to the source of antibiotic. We found this to be true in the data (see Fig.3A
and B, below).
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D)Figure 2. When exposed to antibiotic gradients, the maximal growth does not occur in the absence of drug. A) Prediction
of how bacterial growth rate changes as a function to the distance to the antibiotic, assuming 1-4 copies of a gene that confers
resistance to the drug. B) Empirical relationship between growth rate and distance to antibiotic based on the computationally-
recreated growth curves. C) Dose-response profile observed after an incubation of 8h. Note that this profile is non-monotone.
D) Analogous dose-response observed after 50h. The presence/absence of growth rings was calculated based on the winding
number of the dose-response profile.

This results in non-monotone dose-response profiles, where higher drug concentrations leads to higher cell
density, after just 8h of exposure to the drug. In a spatial context these profiles define rings of growth and,
in our experimental conditions, we managed to detect two rings that appear at different incubation times
(Fig. 3C and D).

II.C Spread of AcrAB-TolC mutations consistent with Fisher’s travelling wave

We then focused on the multidrug efflux pump AcrAB-TolC and used a strain of E. coli where this pump is
tagged with green fluorescence protein (GFP). Based on photographic data, we recreated the relative abun-
dance of this pump as a function of time and distance to antibiotic source as the ratio between cell density
using non-filtered and GFP filtered light. This ratio was two to three-fold that observed at the edge of the
plate where the concentration of antibiotic is minimal (Fig. 3, left).
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B)Figure 3. Distribution of AcrAB-TolC abundance depending on time and distance to antibiotic. A) Distribution of AcrAB-
TolC, based on relative fluorescence data, as a function of time and distance to antibiotic source. The red lines highlight where the
maximal and local maximum growth rate was observed, respectively. B) Relative distribution of AcrAB-TolC at different times.
Note how the maximal abundance shifts towards the edge of the plate, where the concentration of drug is minimal.

To see whether the change in relative fluorescence was caused by regulatory or chromosomal changes (i.e.
genomic amplification), we used quantitative PCR. Using rob (the gene, not the author) as a reference, we
confirmed that acr underwent genomic amplification within 24h depending on the cells’ distance to the
source of antibiotic (see findings above). Moreover, the mutants with additional copies of acr spreaded back-
wards resembling the theoretical travelling wave of beneficial mutations postulated by Fisher in the 1930s10

(Fig. 3, right).
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