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Why would this happen?…so far, so good
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…there is a theoretical ‘but’ to this too:

The rK selection theory

What is it?

If natural selection is density-dependent...

1
N
dN
dt

N
K

r Natural Selection

K-selection

r-selection

R.H. MacArthur, E.O. Wilson. The theory of island biogeography (1967).

E.R. Pianka. On r- and K-selection. Am Nat 104(940), 592–597 (1970).

population size = K

= #cells

= #

cells

sugar

⇥ sugar

= c⇥ S

= e�ciency⇥ sugar

Defining growth rate and carrying capacity
Monod (1942)

K = c · S0 r = c · rmax ·S0
km+S0

growth rate = r = r
max

S

k + S
max. growth rate = h�1

= (sugar

out ! sugar

in

) ! (sugar

in ! biomass)

= (sugar · cell�1

h

�1

)⇥ (sugar

�1

cell)

=

V
max

S

k + S
⇥ e�ciency

Defining growth rate and carrying capacity
Monod (1942)

K = c · S0 r = c · rmax ·S0
km+S0

r =
V
max

S

k + S
⇥ c

K = c⇥ S



…there is a theoretical ‘but’ to this too:

The rK selection theory

What is it?

If natural selection is density-dependent...

1
N
dN
dt

N
K

r Natural Selection

K-selection

r-selection

R.H. MacArthur, E.O. Wilson. The theory of island biogeography (1967).

E.R. Pianka. On r- and K-selection. Am Nat 104(940), 592–597 (1970).

population size = K

= #cells

= #

cells

sugar

⇥ sugar

= c⇥ S

= e�ciency⇥ sugar

Defining growth rate and carrying capacity
Monod (1942)

K = c · S0 r = c · rmax ·S0
km+S0

growth rate = r = r
max

S

k + S
max. growth rate = h�1

= (sugar

out ! sugar

in

) ! (sugar

in ! biomass)

= (sugar · cell�1

h

�1

)⇥ (sugar

�1

cell)

=

V
max

S

k + S
⇥ e�ciency

Defining growth rate and carrying capacity
Monod (1942)

K = c · S0 r = c · rmax ·S0
km+S0

r =
V
max

S

k + S
⇥ c

K = c⇥ S



the theory ‘but’:

r =
V
max

S

k + S
⇥ cK = c⇥ S =) r(K) =

V
max

K

kc+KDefining growth rate and carrying capacity
Monod (1942)

K = c · S0 r = c · rmax ·S0
km+S0

r

K

Monod

The rK selection theory

What is it?

If natural selection is density-dependent...

1
N
dN
dt

N
K

r Natural Selection

K-selection

r-selection

R.H. MacArthur, E.O. Wilson. The theory of island biogeography (1967).

E.R. Pianka. On r- and K-selection. Am Nat 104(940), 592–597 (1970).

6=



recall the data ‘but’:

We need to unify all this…
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Let us manipulate the parameter c

Manipulating rrn operons in E. coli

“We conclude that under circumstances of carbon limitation the cells have formed
translation machinery during the slow growth which is not used to maximum
efficiency, but is rapidly converted to maximum efficiency when the environment is
enriched.” — Koch, AR and Deppe, CS. J Mol Biol 55, 549–562 (1971).

“Inadequate regulation of the expression of additional plasmid-borne rRNA operons in
Escherichia coli was exaggerated at slow growth rates (...). These observations are
consistent with the hypothesis that multiple rRNA operons constitute a metabolic

burden at slow growth rates.” —Stevenson, BS and Schmidt, TM. J Bacteriol 180(7),
1970–1972 (1998)

Let’s start by getting clean data on r and K:

Let us manipulate the parameter c

Manipulating rrn operons in E. coli

“We conclude that under circumstances of carbon limitation the cells have formed
translation machinery during the slow growth which is not used to maximum
efficiency, but is rapidly converted to maximum efficiency when the environment is
enriched.” — Koch, AR and Deppe, CS. J Mol Biol 55, 549–562 (1971).

“Inadequate regulation of the expression of additional plasmid-borne rRNA operons in
Escherichia coli was exaggerated at slow growth rates (...). These observations are
consistent with the hypothesis that multiple rRNA operons constitute a metabolic

burden at slow growth rates.” —Stevenson, BS and Schmidt, TM. J Bacteriol 180(7),
1970–1972 (1998)

So, manipulating rrn operon # should affect r & efficiency:



S1 TEXT: USING A SEQUENTIAL REGIMEN TO ELIMINATE BACTERIA AT

SUB-LETHAL ANTIBIOTIC DOSAGES

Ayari Fuentes-Hernandez+, Jessica Plucain+, Fabio Gori+, Rafael Pena-Miller,
Carlos Reding, Gunther Jansen, Hinrich Schulenburg, Ivana Gudelj and Robert Beardmore⇤

§1 Experimental Materials and Methods

1.1 Media and strains.

All experiments were conducted using Escherichia coli K12(AG100) and M9 minimal media (0.2% glucose and
0.1% casamino acids). We used two antibiotics with a synergistic interaction: doxycycline (DOX) and erythromycin
(ERY). Stock solutions of antibiotics were made from powder stocks (Sigma-Aldrich) at 5mg/ml in water for DOX
and 100mg/ml in ethanol for ERY and stored at �20�C. All subsequent dilutions were made from these stocks and
kept at 4�C. After testing, no measurable decay in the e�cacy of the antibiotic has been observed when storing these
antibiotics in either of these conditions for one week, or less.

1.2 Batch-transfer protocol

For all the protocols consisting of multiple serial batch transfers referred to in the main text, with each transfer
conducted once per ‘season’, we used the same microtitre plate reader (BioTek) to measure optical densities every 20
minutes at 600nm as a proxy for bacterial population densities in di↵erent environments (written as OD600nm or just
OD). We used 96-well plates containing 150µL of liquid in each well incubated at 30�C to culture bacteria, shaken in
a linear manner before each OD measurement was taken.

For an experiment exposing bacteria to antibiotics lasting several seasons (where each season lasts 12h or 24h) an
initial inoculation was performed using an isogenic population obtained from a single colony and cultured overnight
in M9 minimal media (0.2% glucose, 0.1% casamino acids) at 30� in a shaker-incubator. At the end of each season,
the same 96-pin plate replicator was used to sample the liquid volume (containing bacteria and spent medium) which
was then transferred to a new plate containing fresh growth medium and antibiotics, ensuring the same environment
for each replicate population was maintained. Every subsequent transfer to a fresh plate containing medium was
performed using the same 96-pin replicator, we estimated the volume transferred to be 1.5µL. The so-obtained, time-
dependent optical densities were then imported into Matlab in order to subtract the background (determined from
blank wells containing only medium) and compute the mean optical densities and other statistics.

N.B.: media-only wells testing for the presence of potential contamination were used on every 96-well microtitre plate.
If any showed turbidity above blank levels, the assay in question was repeated.

1.3 Live cell counts: optical density is a reasonable proxy for cell density
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Fig. S1 – Data showing that OD is positively correlated with a live cell count (CFU per ml) in the plate reading devices
that we use. (a) E. coli K12(AG100) was cultured in M9 and serially diluted to di↵erent OD values, these were then counted
to reveal CFU values (all error bars are 95% confidence intervals of the mean, three replicates). A linear regression (blue)
is shown next to data. A constrained linear regression that must pass through the datapoint (0, 0) is also shown (red). (b)
The latter indicates that OD has the potential to over-estimate live cell numbers at the lowest densities.

Many of the bacterial growth and inhibition experiments described in this article require the continual measurement
of bacterial population densities and this cannot be done with by-hand lab techniques, such as colony counting. We
therefore use devices for which proxies of population density can be rapidly produced using automated protocols that
read densities as light absorbance.
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A decent enough proxy: OD ~ cells per ml



rrn operon # affects efficiency:
1 1 6 C H A P T E R V
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FIGURE 5.4. Representation of the change in yield, shown on the y -axis, as a function of the number of rrn operons.

Each subplot shows this relationship when different concentrations of glucose is supplied of the media. Overall, there

is a linear, significant increase in yield as the number of rrn operons is reduced when the concentration of glucose is

above 0.25 mg/mL (black). However, we observed no significant change when this concentration is equal or lower than

0.25mg/mL.
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As K ~ efficiency x sugar, we can change glucose & 
rrn operon # to manipulate r and K together, voila!… :
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FIGURE 5.8. Relationship between the per capita growth rate, measured as doublings per hour on the y -axis, and

yield, defined as cell density in OD units generated per mg of glucose after 24h of growth, on the x-axis. Each subplot

represents this relationship for every strain, and hereby demonstrates the robustness of this RYTO.

All the strains have a similar RY parabola:
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Our Monod-like ‘metabolic model’ misses many features, 
after all, it contains no info about rrn # … : 
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Conclusion: everyone was right somewhere! 
!
There is a rate-yield parabola, so there is an rK parabola.



Finally, even the Rate-Yield Trade-Off (RYTO) had proven elusive…



and the relative yield was observed (Fig. 2B). These data
suggest that Rapp

m and kappcat do not change much between the
test condition and the reference state and that the nutritional
and oxygen variations do not affect g1, f1, and kdeg.

Implication in Metabolic Engineering

An immediate application of the square-root relation is in
strain design for metabolite production. Microorganisms
are commonly engineered to produce products of interest
such as biofuels (Atsumi et al., 2007, 2008; Bermejo et al.,
1998; Hanai et al., 2007; Yomano et al., 1998), amino acids

(Lutke-Eversloh and Stephanopoulos, 2007) 1,3-propandiol
(Zhu et al., 2002), isoprenoids (Farmer and Liao, 2000;
Martin et al., 2003). The diversion of carbon to these
products reduces the cell mass yield, YB. According to
Equation (29), without increasing Rapp

m or kappcat , the growth
rate is bound to decrease (Theoretical Aspects) when
product formation occurs during the growth phase. This is a
phenomenon commonly observed. Therefore, to increase
productivity during the growth phase, one should increase
Rapp
m to compensate for the decrease in YB.

Implication on Rate and Yield Trade-Off

Since the wild-type E. coli follows the equality of Equation
(12), this relationship may be used to explain the choice of
less-efficient metabolic pathway to gain grow rate. It is
recognized that protein overexpression decreases the biomass
yield because of the energy cost due to additional protein
synthesis at the expense of synthesizing others. Thus, the
biomass yield, YB, is negatively correlated with Rm at high Rm.
At a low Rm, YB remains relative constant because the
metabolic capacity of the cell can digest the substrate intake
efficiently. A hypothetical example of such a relationship is
shown in Figure 3A. Combing this YB!Rm relationship and
the equality in Equation (29), we show that the maximal
growth rate occurs at a sub-optimal yield (Fig. 3B). Therefore,
on the right-hand side of the maximal growth rate, there
appears to be a trade-off between the growth rate and the
yield. However, whenmeasured under a wide range of growth
conditions, the trade-off is not obvious. This result is
consistent with E. coli’s choice of less-efficient fermentative
pathway when glucose and oxygen are both abundant. This
explanation does not exclude the argument of ATP yield
optimization or the limitation of respiratory pathways. It
does, however, provide another perspective.

The analysis shown here is based on Equations (1) and
(2), which are generally accepted description for enzyme
kinetics. Equation (1) states that substrate uptake rate is
proportional to the copy number of the transporter
multiplied by an unspecified kinetic function whose
maximum value is unity. Therefore, the proportional
constant is kcat. Equation (2) is a balance between protein
synthesis and protein degradation. These two equations are
almost universally valid. Equation (12) is a direct
mathematical consequence of Equations (1) and (2), and
involves no additional assumption except that the cell is not
undergoing a downshift in the transporter synthesis. With
simple derivations, we uncovered a hidden boundary
between growth rate and biomass yield, which escaped
notice for many decades. This relationship is essential to the
foundation of biochemical engineering, industrial biotech-
nology, as well as microbiology. Althoughmore experiments
are needed to test the generality and evolutionary
implications, the simplicity of the analysis and its free of
restrictive assumptions are quite appealing and promising.

Figure 2. Square relationship between growth rate and biomass yield. A: The
relative (denoted by subscript r) growth rate and the relative biomass yield in glucose
followed the square-root relationship when cultured with or without amino acid (AA)
supplementation or oxygen. The rates and yields were normalized to the wild-type
values under aerobic conditions without AA supplements. All AA indicates all 20 amino
acids were added to the culture while ‘‘some AA’’ indicates only some of the amino
acids were added. B: The relative growth rate and the relative biomass yield followed
the square-root relationship when cultured in various sugars with or without oxygen.
The growth rate and biomass yield for each sugar is normalized against the aerobic
condition in the same sugar.
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ABSTRACT: Although the theoretical value of biomass yield
can be calculated frommetabolic network stoichiometry, the
growth rate is difficult to predict. Since the rate and yield can
vary independently, no simple relationship has been dis-
covered between these two variables. In this work, we
analyzed the well-accepted enzyme kinetics and uncovered
a hidden boundary for growth rate, which is determined by
the square-root of three physiological parameters: biomass
yield, the substrate turnover number, and the maximum
synthesis rate of the turnover enzyme. Cells cannot grow
faster than the square-root of the product of these para-
meters. This analysis is supported by experimental data and
involves essentially no assumptions except (i) the cell is not
undergoing a downshift transition, (ii) substrate uptake
enzyme activity is proportional to its copy number. This
simple boundary (not correlation) has escaped notice for
many decades and suggests that the yield calculation does
not predict the growth rate, but gives an upper limit for the
growth rate. The relationship also explains how growth rate
is affected by the yield and sheds lights on strain design for
product formation.
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Introduction

Growth rate and biomass yield are important physiological
measurements used in microbiology, biochemical engineer-
ing, and industrial biotechnology. They are particularly
significant in large-scale production of biofuels and
commodity chemicals where efficiency and rate are crucial.
They are also important in understanding physiology and

evolution in microbiology. While the specific growth rate of
a microorganism is a kinetic property which reflects the time
efficiency, biomass yield (biomass produced per substrate
consumed) is a dimensionless quantity reflecting the
resource utilization efficiency. By definition, these two
variables are related by the specific substrate consumption
rate: the specific growth rate divided by the specific substrate
consumption rate is the biomass yield. Since the specific
substrate consumption rate is a strong function of
intracellular states and extracellular conditions, no obvious
relationship between growth rate and the yield exists.
However, these two quantities are often implicitly assumed
proportional to each other in strain design, or inversely
proportional to each other when discussing the trade-off
between rate and efficiency in evolution (Pfeiffer et al.,
2001). Numerous models exist for growth rate (Button,
1985) and yield (Edwards and Palsson, 2000; Liao et al.,
1996) separately, but none explicitly discussed their
relationship.

Organisms such as Saccharomyces cerevisiae and Escher-
ichia coli use more wasteful fermentative pathways even
under aerobic conditions (Farmer and Liao, 1997; Picon
et al., 2005; Postma et al., 1989; MacLean and Gudelj, 2006),
which result in a lower yield while increasing growth rate.
Many plausible explanations exist, including the limitation
of TCA cycle, the optimal ATP production rate, and a trade-
off between the rate and yield (Kreft, 2004; Pfeiffer et al.,
2001), which implies that growth rate might decrease when
the biomass yield increases by a more efficient metabolic
network design. Other theories indirectly related to the rate
and the yield involve protein synthesis that optimizes the
trade-off between the cost and benefit (Dekel and Alon,
2005; Young and Ramkrishna, 2007). In general, the
relationship between the growth rate and yield has been
obscure, and the relationshipmay be explored frommultiple
angles emphasizing different aspects of physiology. Never-
theless, this relationship is fundamental to evolution and
microbial strain design and remains to be further
illuminated. Does efficient resource utilization necessarily
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Heterotrophic organisms generally face a trade-off between rate and yield of
adenosine triphosphate (ATP) production. This trade-off may result in an evo-
lutionary dilemma, because cells with a higher rate but lower yield of ATP
production may gain a selective advantage when competing for shared energy
resources. Using an analysis of model simulations and biochemical observa-
tions, we show that ATP production with a low rate and high yield can be viewed
as a form of cooperative resource use and may evolve in spatially structured
environments. Furthermore, we argue that the high ATP yield of respirationmay
have facilitated the evolutionary transition from unicellular to undifferentiated
multicellular organisms.

Heterotrophic organisms obtain their energy
by the degradation of organic substrates into
products with lower free energy. The free
energy difference between substrate and
product can in part be conserved by produc-
tion of ATP and in part be used to drive the
degradation reaction. The maximal ATP
yield is obtained if the entire free energy
difference is conserved as ATP. However, in
this case the reaction is in thermodynamic
equilibrium, and therefore the rates of sub-
strate degradation and ATP production van-

ish. If some of the free energy difference is
used to drive the reaction, the rate of ATP
production increases with decreasing yield
until a maximum is reached. Hence, for fun-
damental thermodynamic reasons there is al-
ways a trade-off between yield (moles of
ATP per mole of substrate) and rate (moles of
ATP per unit of time) of ATP production in
heterotrophic organisms (1–4).

A trade-off between yield and rate of
ATP production is also present in sugar
degradation by fermentation and respira-
tion. In the presence of oxygen and sugars,
many organisms are in principle capable of
using both pathways to produce ATP. Be-
cause the ATP production rate of respira-
tion is rapidly saturated at high levels of
resource or limited oxygen supply (5– 8),
these organisms can choose, at least in the
evolutionary sense, to increase the rate of

ATP production by using fermentation in
addition to respiration. However, because
the yield of fermentation is much lower
than that of respiration (2 mol versus about
32 mol of ATP per mole of glucose), the
use of fermentation in addition to respira-
tion increases the rate of ATP production at
the cost of a lower total yield.

If energetic limitation is an important
factor for organisms in their natural envi-
ronment, we then expect that the properties
of ATP-producing pathways have been un-
der strong selection pressure during evolu-
tion. The existence of a trade-off between
yield and rate of ATP production leads to
the following question: Under what condi-
tions is it favorable to use a pathway with
high yield but low rate, as opposed to a
pathway with low yield but high rate? A
cell using a pathway with high yield and
low rate can produce more ATP (and thus
more offspring) from a given amount of
resource. However, this advantage disap-
pears when the cell is in resource competi-
tion with cells that produce ATP at a higher
rate but a lower yield. While only those
cells that consume the resource more rap-
idly benefit from the higher rate of ATP
production, all competitors exploiting the
resource share the consequences of the
more rapid resource exhaustion (9).

The competition between cells with dif-
ferent properties in ATP production can be
illustrated with a simple population biologi-
cal model. Assume that a resource S is pro-
duced at a constant rate v and is consumed by
n different strains of cells, Ni, at a rate of
Ji

S(S) per cell. We assume that the growth
rates of the strains are energetically limited
and proportional to the rate of ATP produc-
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low rate can produce more ATP (and thus
more offspring) from a given amount of
resource. However, this advantage disap-
pears when the cell is in resource competi-
tion with cells that produce ATP at a higher
rate but a lower yield. While only those
cells that consume the resource more rap-
idly benefit from the higher rate of ATP
production, all competitors exploiting the
resource share the consequences of the
more rapid resource exhaustion (9).

The competition between cells with dif-
ferent properties in ATP production can be
illustrated with a simple population biologi-
cal model. Assume that a resource S is pro-
duced at a constant rate v and is consumed by
n different strains of cells, Ni, at a rate of
Ji

S(S) per cell. We assume that the growth
rates of the strains are energetically limited
and proportional to the rate of ATP produc-

1Friedrich Miescher Institute, Post Office Box 2543,
CH-4002 Basel, Switzerland. 2Max Delbrück Center
for Molecular Medicine, D-13092 Berlin, Germany.

*Present address: Experimental Ecology and Theoret-
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abstract: Theoretical studies have predicted a trade-off between
growth rate and yield in heterotrophic organisms. Here we test for the
existence of this trade-off by analyzing the growth characteristics of 12
E. coli B populations that evolved for 20,000 generations under a con-
stant selection regime. We performed three different tests. First, we
analyzed changes in growth rate and yield over evolutionary time for
each population. Second, we tested for a negative correlation between
rate and yield across the 12 populations. Finally, we isolated clones
from four selected populations and tested for a negative correlation
between rate and yield within these populations. We did not find
evidence for a trade-off based on the first two tests. However, we did
observe a trade-off based on the within-population correlation of yield
and rate. Our results indicate that, at least for the populations studied
here, an analysis of the within-population diversity might be the most
sensitive test for the existence of a trade-off. The observation of a trade-
off within, but not between, populations suggests that the populations
evolved different genetic solutions for growth in the selective environ-
ment, which in turn led to different physiological constraints.
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Adenosine triphosphate (ATP) is a key compound in the
energy metabolism of cells. Its degradation into adenosine
diphosphate (ADP) and phosphate is generally used to
drive thermodynamically unfavorable reactions, such as
active transport and biosynthesis. Thus, ATP has to be
continuously regenerated for cellular growth. In hetero-
trophic organisms, the production of ATP is coupled to
the degradation of energy-rich organic compounds. Pfeif-
fer et al. (2001) recently postulated that a trade-off exists
between rate and yield in heterotrophic ATP production.
(“Rate” refers here to units of ATP produced per unit of
time and “yield” to units of ATP produced per unit of
resource.) This trade-off can be observed, for example, if
organisms use alternative ATP-producing pathways with
opposing properties in yield and rate, such as respiration
and respirofermentation (i.e., using respiration only vs.
using fermentation in addition to respiration). On a more
fundamental level, such a trade-off arises from thermo-
dynamic constraints because the free energy difference be-
tween substrate and product in an ATP-producing path-
way is divided into a part that is used to phosphorylate
ADP to ATP and a part that is used to drive the pathway.
This division causes a trade-off between yield and rate of
ATP production because the larger is the part used to
produce ATP, the slower is the pathway (Pfeiffer and Bon-
hoeffer 2002).

Under energetic limitation, the rate of cell growth and
the biomass yield are determined by the rate and yield of
ATP production (Bauchop and Elsden 1960; Dykhuizen
and Dean 1990; Helling 2002). Because energetic limita-
tion may be common for heterotrophic organisms under
natural conditions, we expect that the properties of ATP-
producing pathways have been under strong selection dur-
ing evolution. The existence of a trade-off between rate
and yield of ATP production thus leads to the expectation
that under environmental conditions that select for an
increasing rate of ATP production, a corresponding de-
crease should be observed in yield.

The trade-off may be measured and tested if the fol-
lowing two conditions are met. First, the populations must
have evolved in an environment that selects primarily for
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Figure 3. A: A typical effect of protein overexpression on yield.
ðYBÞ ¼ 0:5$ ð1þ expð$6Rm þ 6ÞÞ$1. When protein synthesis rate (Rm) increases,
the biomass yield decreases because of higher energy demand and potential
saturation of downstream metabolic pathways. B: When the relationship in (A) is
substituted in Equation (4), a maximum growth rate (open diamonds in A and B) occurs
at a sub-optimal yield. Trade-off occurs when the growth rate and the yield of the
strain starts on the right side of the maximum growth rate. [Color figure can be seen in
the online version of this article, available at www.interscience.wiley.com.]
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Figure 4: Trade-off between growth rate and yield across clones within particular evolved populations: growth yield versus rate estimated for 92
clones sampled from each of four populations at generation 20,000 (A, ; B, ; C, ; D, ). Each value is the mean of upAra ! 1 Ara ! 2 Ara ! 3 Ara " 3
to five measurements. Error bars represent standard errors. Three of the four populations show a highly significant negative correlation (dashed
lines). The remaining population shows a significant positive correlation over all clones (B, dashed line), but it has been previously shown to have
evolved a stable dimorphism. Based on their rate and yield data, we grouped the clones of this population into two clusters, referred to as cluster
1 (circles) and cluster 2 (crosses). Within both clusters, we observe a significant negative correlation (dotted lines). Details on the clustering algorithm
and all statistical results are given in the text.

growth rate and yield within each population, and previous
research has also demonstrated within-population genetic
variability maintained by some combination of mutation-
selection balance, selective sweeps including clonal inter-
ference, and frequency-dependent selection (Elena and Len-
ski 1997; Gerrish and Lenski 1998; Papadopoulos et al. 1999;
Rozen and Lenski 2000; Rozen et al. 2005). Thus, it is mean-
ingful to test whether growth rate and yield exhibit a neg-
ative genetic correlation at the within-population level. In
three of the four populations, we observed highly significant

negative correlations between growth rate and yield, al-
though in one of the populations a significant positive cor-
relation was found ( : , ,Ara ! 1 r p !0.67 df p 90 P !

; : , , ; :.0001 Ara ! 2 r p 0.35 df p 87 P p .0008 Ara ! 3
, , ; : ,r p !0.57 df p 89 P ! .0001 Ara " 3 r p !0.36

, ). Interestingly, the population showingdf p 88 P p .0005
a positive correlation is known to have evolved a stable
dimorphism that has persisted since early in the experiment
(Rozen and Lenski 2000; Rozen et al. 2005), and it also
shows distinct clusters in the rate-yield plot (fig. 4B). We
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